Prácticas con Geobrebra sobre composición o producto de dos simetrías o reflexiones
1) En la escena siguiente puede verse la composición de dos simetrías de ejes paralelos(a y b). Puedes reproducirla de forma continua con el botón [Reproduce] o paso a paso con los botones de [Avance] y [Retroceso]. En la parte superior a la figura F se le aplica primero la simetría de eje a y después la de eje b, en la parte inferior a la misma figura (que ahora llamamos F1) se le aplica la misma composición pero en orden inverso, primero según el eje b y después según el eje a.
Después de visualizar la escena ¿puedes decir si la composición de simetrías de ejes paralelos es conmutativa ?.
Como ya sabemos la composición de dos reflexiones equivale a una traslación, ¿qué relación existe entre los vectores de la traslación resultante si invertimos el orden del producto?.
2) Ahora practica la reflexión dibujando las figuras simétricas (respecto de los ejes e1 y e2) de las tres que se te muestran en la escena siguiente usando la herramienta [Polígono], cuando acabes pulsa sobre el botón para comprobar tu trabajo:
3) En el triángulo equilátero de la figura se han definido tres simetrías de ejes e1, e2 y e3. Si las componemos de dos en dos ¿qué producto se obtiene?.
Completa una tabla como la siguiente, para ello fíjate qué sucede con los vértices, por ejemplo e1oe1(A) = e1(A) = A, es la identidad pero e1oe2(A) = e1(C)= C' = C"= GO,240º
e1 | e2 | e3 | |
e1 | I |
GO,240º | |
e2 | |||
e3 |
4) En la escena siguiente puede practicarse la composición de simetrías con ejes no paralelos. Usando la herramienta polígono has de dibujar los polígonos simétricos respecto del que se da F según los ejes perpendiculares e1 y e2 que se muestran. Cuando lo consigas pulsa el botón comprobar y después comprueba el ángulo a que equivalen las dos simetrías( mediante el deslizador y contesta después a las preguntas de más abajo.
¿A qué giro equivale el producto de las dos simetrías de ejes perpendiculares?
¿Como son entre sí las figuras F y F2?
¿Como son entre sí las figuras F1 y F3?
¿Cómo se puede obtener directamente F2 a partir de F?
¿Cómo se puede obtener directamente F3 a partir de F1?
5) Otra práctica semejante a la anterior pero en el que los ejes de simetría no son paralelos ni perpendiculares, usa el deslizador para hallar el giro que equivale a las dos simetrías:
¿Cuál es el ángulo positivo (en sentido antihorario) al que equivale la composición de las dos simetrías? ¿Y en sentido antihorario?
¿Cuál es el ángulo que forman los dos ejes de simetría? ¿ A qué ángulo equivale la composición de las dos simetrías en orden inverso?