8 Calcula el área limitada por la función $y = x^3 - 3x^2 + 2x y$ el eje OX.

---00000---

₱ Hallamos los puntos de corte con el eje horizontal haciendo y = 0, y resolviendo la ecuación resultante.

$$x^3-3x^2+2x=0 \Leftrightarrow x(x^2-3x+2)=0 \Leftrightarrow \begin{cases} x=0 \\ x^2-3x+2=0 \Leftrightarrow \begin{cases} x=\frac{3-\sqrt{9-8}}{2}=1 \\ x=\frac{3+\sqrt{9-8}}{2}=2 \end{cases} \end{cases}$$

- ⊕ Construimos los dos intervalos de integración : [0, 1], [1, 2].
- * Hallamos el área:

$$\begin{split} \text{Area} &= \left| \int_0^1 (x^3 - 3x^2 + 2x) dx \right| + \left| \int_1^2 (x^3 - 3x^2 + 2x) dx \right| = \left| \frac{x^4}{4} - x^3 + x^2 \right|_0^1 + \left| \frac{x^4}{4} - x^3 + x^2 \right|_1^2 \right| = \\ &= \left| \left(\frac{1}{4} - 1 + 1 \right) \right| + \left| \left(4 - 8 + 4 \right) - \left(\frac{1}{4} - 1 + 1 \right) \right| = \left| \frac{1}{4} \right| + \left| -\frac{1}{4} \right| = \frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}u^2 \end{split}$$

9 Halla el área de la región limitada por $f(x)=-e^x$, el eje de abscisas y las rectas x=-1 y x=2.

---00000---

Como la función no corta al eje horizontal, el único intervalo de integración es [-1, 2] y el área :

O Calcula el área del recinto limitado por $f(x) = \ln x$, el eje de abscisas y las $\arctan x = e \ y \ x = e^2$.

---00000---

 \mathbb{H} Puntos de corte son el eje horizontal (f(x) = 0)

$$Inx = 0 \Rightarrow x = e^0 = 1 \notin [e, e^2]$$

$$\text{\'Area} = \left| \int_e^{e^2} \ln x dx \right| = \left| \ x (\ln x - 1) \right|_e^{e^2} \right| = \left| \left(e^2 (\ln e^2 - 1) - \left(e (\ln e - 1) \right) \right| = \left| e^2 \right| = e^2 u^2$$

en donde hemos sustituido la integral por el resultado del ejercicio Nº 2 de la página 190 del tema anterior.

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Box \Diamond \Diamond \Diamond \Diamond$$

- **10** Determina el área limitada por $f(x) = \cos x$ y el eje OX entre las abscisas 0 y 2 π .
 - $Halla \int_0^{2\pi} \cos x dx$ ¿Coincide este resultado con el valor del área calculada?

---00000---

 \Re Puntos de corte de la función con el eje horizontal (f(x) = 0)

$$cosx = 0 \Rightarrow x = \pi/2 + k\pi$$

Intervalos de integración: como en el intervalo de integración [0, 2π] la función $f(x) = \cos x$ corta al eje horizontal dos veces (en $x = \pi/2$ y en $x = 3\pi/2$) los intervalos de integración son tres [0, $\pi/2$], [$\pi/2$, $3\pi/2$] y [$3\pi/2$, 2π].

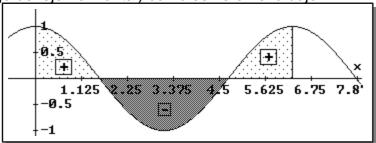
₩ Área

$$\begin{split} & \text{\'Area} = \left| \int_0^{\frac{\pi}{2}} \cos x \text{d}x \right| + \left| \int_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \cos x \text{d}x \right| + \left| \int_{\frac{3\pi}{2}}^{2\pi} \cos x \text{d}x \right| = \left| \text{senx} \right|_0^{\frac{\pi}{2}} \left| + \left| \text{senx} \right|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \right| + \left| \text{senx} \right|_{\frac{\pi}{2}}^{\frac{3\pi}{2}} \left| = \left| \text{sen} \frac{\pi}{2} - \text{sen} 0 \right| + \left| \text{sen} \frac{3\pi}{2} - \text{sen} \frac{\pi}{2} \right| + \left| \text{sen} 2\pi - \text{sen} \frac{3\pi}{2} \right| = 1 + 2 + 1 = 4u^2 \end{split}$$

Século de la integral pedida :

$$\int_0^{2\pi} \cos x dx = \sin x \Big]_0^{2\pi} = \sin 2\pi - \sin 0 = 0 - 0 = 0$$

Se obtiene un valor distinto pues, en el área, hemos calculado valores absolutos y, en la integral los valores positivos (por encima del eje horizontal) se contrarrestan con los positivos (por debajo del eje horizontal) como se ve en el dibujo :



$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Diamond \Diamond \Diamond \Diamond$$

12 Las rectas y = 3x e y = -x + 8, junto con el eje de abscisas, determinan un triángulo. Halla su área usando el cálculo integral y comprueba que se obtiene el mismo resultado por un procedimiento geométrico.

---00000---

※ Puntos de corte

IDENTIFY and SET OF When $\Re C$ on elleje horizontal $\Re C$ and $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are $\Re C$ are $\Re C$ and $\Re C$ are

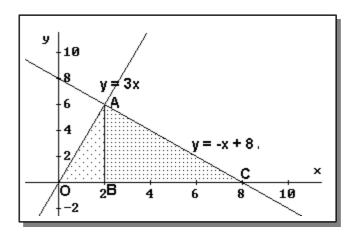
IDENTIFY and SET UP: It is a substitute of the substitute of t

Intervalos de integración : [0, 2] para y = 3x, [2, 8] para y = -x+8.

☆ Área

Área =
$$\left|\int_0^2 3x dx\right| + \left|\int_2^8 (-x+8) dx\right| = \left|\frac{3x^2}{2}\right|_0^2 + \left|-\frac{x^2}{2}+8x\right|_2^8 = |6| + |(-32+64)-(-2+16)| = 24u^2$$

* Método geométrico

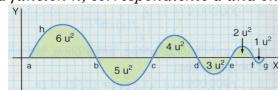


Como puede verse en el dibujo anterior, el área buscada es la suma de las áreas de los triángulos (OAB) y (BAC), el primero de base = 2 y altura = $2 \cdot 3$ = 6 y el segundo de base = 6 y altura = 6, luego :

Área = Triángulo(OAB)+ triángulo(ABC) = $2 \cdot 6/2 + 6 \cdot 6/2 = 6 + 18 =$ 24 u². También puede hacer el área del triángulo (OAC) = $8 \cdot 6/2 =$ 24 u²

$$\diamondsuit \diamondsuit \diamondsuit \blacksquare \blacksquare \bullet \blacksquare \blacksquare \diamondsuit \diamondsuit \diamondsuit$$

13 En la figura se indica el área de los diferentes recintos que determina con el eje OX la gráfica de cierta función h, correspondiente a una onda amortiguada:



a)
$$Halla \int_a^g h(x)dx y \int_a^c h(x)dx + \int_c^f h(x)dx$$

b) Di si son verdaderas o falsas las siguientes igualdades :

$$|x| \int_{c}^{d} h(x) dx = \int_{c}^{d} h(x) dx$$

ii)
$$\left| \int_{f}^{g} h(x) dx \right| = \int_{f}^{g} h(x) dx$$

---00000---

a) para hallar las integrales pedida aplicamos la propiedad ID:3:

$$\int_{a}^{g} h(x)dx = \int_{a}^{b} h(x)dx + \int_{b}^{c} h(x)dx + \int_{c}^{d} h(x)dx + \int_{d}^{e} h(x)dx + \int_{e}^{f} h(x)dx + \int_{f}^{g} h(x)dx =$$

$$= 6 - 5 + 4 - 3 + 2 - 1 = 3$$

$$\int_{a}^{c} h(x) dx + \int_{c}^{f} h(x) dx = \int_{a}^{b} h(x) dx + \int_{b}^{c} h(x) dx + \int_{c}^{d} h(x) dx + \int_{d}^{e} h(x) dx + \int_{e}^{f} h(x) dx = 3 - 1 = 2$$

b)

$$\int_{c}^{d} h(x)dx = 4 = \left| \int_{a}^{d} h(x)dx \right| = |4| = 4 \text{ pero } \int_{f}^{g} h(x)dx = -1 \neq \left| \int_{f}^{g} h(x)dx \right| = |-1| = 1$$

• Halla el área del recinto limitado por las gráficas de $f(x) = 4x - x^2 y g(x) = x$ entre las abscisas 1 y2.

---00000---

 \Rightarrow Puntos de corte: f(x) = g(x); $4x - x^2 = x \Leftrightarrow 3x - x^2 = 0 \Leftrightarrow x(3 - x) = 0 \Leftrightarrow x = 0$ y x = 3

☼ Intervalos: Como en el intervalo pedido [1, 2] no hay ningún punto de corte, ese será el intervalo de integración.

☆ Área :

$$\text{Area} = \left| \int_{1}^{2} (f(x) - g(x)) dx \right| = \left| \int_{1}^{2} (3x - x^{2}) dx \right| = \left| \frac{3x^{2}}{2} - \frac{x^{3}}{3} \right|_{1}^{2} = \left| (6 - \frac{8}{3}) - (\frac{3}{2} - \frac{1}{3}) \right| = \left| \frac{10}{3} - \frac{7}{6} \right| = \frac{13}{6} u^{2}$$

•• Halla el área de la región comprendida entre las funciones f(x) = 2x- x^2 y $g(x) = x^2$ - x - 2 .

---00000---

* Puntos de corte (f(x) = g(x) :

$$2x - x^2 = x^2 - x - 2 \iff 2x^2 - 3x - 2 = 0 \Rightarrow \begin{cases} x = \frac{3 - \sqrt{9 + 16}}{4} = \frac{3 - 5}{4} = -\frac{1}{2} \\ x = \frac{3 + \sqrt{9 + 16}}{4} = \frac{3 + 5}{4} = 2 \end{cases}$$

* Intervalos: Los dos puntos de corte forman un intervalo [-1/2, 2].

★ Área :

OG Calcula el área de la región del plano limitada por la gráfica de la parábola $y = x^2 - x y$ por la de la función $f(x) = \frac{x - x^2}{(x+1)(x+2)}$.

---00000---

Puntos de corte (f(x) = g(x)):

$$x^2-x=\frac{x-x^2}{(x+1)(x+2)} \Longleftrightarrow (x^2-x)(x+1)(x+2)=x-x^2 \Longleftrightarrow (x^2-x)(x+1)(x+2)+(x^2-x)=0 \Longleftrightarrow (x^2-x)(x+1)(x+2)=0$$

$$\Leftrightarrow (x^2-x)[(x+1)(x+2)+1]=0 \Leftrightarrow x(x-1)(x^2+3x+3)=0 \Leftrightarrow \begin{cases} x=0 \\ x-1=0 \Rightarrow x=1 \\ x^2+3x+3=0 \Rightarrow x \notin \mathbb{R} \end{cases}$$

Discontinuidades:

- \Re g(x) tiene discontinuidades en x = -1 y x = -2 que son asíntotas verticales.
- Intervalos de integración: Como las discontinuidades no están incluidas dentro del intervalo formado por los dos puntos de corte, el intervalo de integración será [0, 1].

🏖 Área:

La primera integral es de tipo racional y los grados del numerador y denominador son iguales, hay que hacer el cociente :

$$\begin{array}{c|c} -x^2 + x & x^2 + 3x + 2 \\ \hline x^2 + 3x + 2 & -1 \\ \hline 4x + 2 & \end{array}$$

Luego:

$$\int \frac{x-x^2}{x^2+3x+2} dx = \int \frac{-(x^2+3x+2)+(4x+2)}{x^2+3x+2} dx = \int -dx + \int \frac{4x+2}{x^2+3x+2} dx \ \text{De nuevo hacemos la segunda}.$$

$$\int \frac{4x+2}{x^2+3x+2} dx = \int \frac{A}{x+1} dx + \int \frac{B}{x+2} dx \ y \ \text{hallamos A y B:}$$

$$\frac{_{4x+2}}{_{x^2+3x+2}} = \frac{_A}{_{x+1}} + \frac{_B}{_{x+2}} = \frac{_{A(x+2)+B(x+1)}}{_{x^2+3x+2}} \Rightarrow \left\{ \begin{array}{c} \text{Si } x = \text{-1} \Rightarrow -2 = A \\ \text{Si } x = \text{-2} \Rightarrow -6 = -B \Longleftrightarrow B = 6 \end{array} \right\}$$

Y procediendo a la inversa:

Un cuerpo se mueve con una aceleración que viene dada por la función a $(t) = 5 + 3 t \text{ m.s}^{-2}$. Halla el incremento de velocidad experimentado entre los 3 y los 5 segundos, y el espacio recorrido en ese tiempo, sabiendo que el cuerpo partía del reposo.

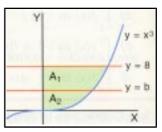
---00000---

La fórmula de la aceleración en cinemática es : $a(t) = \frac{dv}{dt} \Rightarrow dv = a(t)dt \Rightarrow \int_{v_1}^{v_2} dv = \int_{t_1}^{t_2} a(t)dt$

$$\begin{split} \Delta v &= v_2 - v_1 = \int_3^5 (5+3t) dt = 5t + \frac{3t^2}{2} \Big]_3^5 = \left(25 + \frac{75}{2}\right) - \left(15 + \frac{27}{2}\right) = \left(25 - 15\right) + \left(\frac{75}{2} - \frac{27}{2}\right) = 34 \frac{m}{\$} \\ v &= \int a(t) dt + v_0 = \int (5+3t) dt + 0 = 5t + \frac{3t^2}{2} \ \text{Como} \ v(t) = \frac{de}{dt} \Rightarrow de = v(t) dt \Rightarrow \int_{e_1}^{e_2} de = \int_{t_1}^{t_2} v(t) dt \Rightarrow \\ \Delta e &= e_2 - e_1 = \int_3^5 \left(5t + \frac{3t^2}{2}\right) dt = \left(\frac{5t^2}{2} + \frac{t^3}{2}\right) \Big]_3^5 = \frac{125 + 125}{2} - \frac{45 + 27}{2} = 125 - 36 = 89 m \end{split}$$

0 Calcula el valor del parámetro b para que las áreas A_1 y A_2 de la figura sean iguales.

- Halla dicha área.



---00000---

Si ha de cumplirse que $A_1 = A_2 \Rightarrow A = 2A_1 = 2A_2$, siendo el área total A el comprendido entre la recta y = 8 y la curva y = x^3 , es decir :

igoplus A es el área comprendida en el intervalo [0, 2](el 2 es la abscisa correspondiente a y = 8, es decir x = $8^{1/3}$ = 2) de la función f(x) = 8 - x^3 (diferencia entre la recta y = 8 y la parábola cúbica y = x^3), por tanto :

 $A = \int_0^2 (8 - x^3) dx$

 $igoplus A_2$ es el área comprendida en el intervalo [0, $b^{1/3}$] ($b^{1/3}$ es la abscisa correspondiente a $y = b = x^3 \Rightarrow x = b^{1/3}$) de la función $g(x) = b - x^3$ (diferencia entre la de la recta y = b y la parábola $y = x^3$), es decir :

$$A_2 = \int_0^{\sqrt[3]{b}} (b - x^3) dx$$

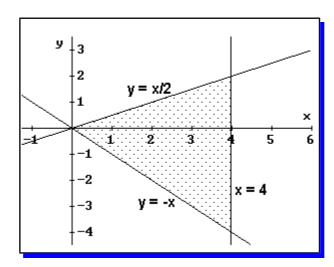
Igualando ambas áreas , $A = 2A_2$:

$$\int_0^2 (8-x^3) dx = 2 \int_0^{\sqrt[3]{b}} (b-x^3) dx \iff 8x - \frac{x^4}{4} \Big]_0^2 = 2 \left(bx - \frac{x^4}{4} \right)_0^{\sqrt[3]{b}} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b^4}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}}{4} \right) \iff 12 = 2 \left(b\sqrt[3]{b} - \frac{\sqrt[3]{b}$$

$$\frac{12}{2} = 6 = b\sqrt[3]{b} - \frac{b\sqrt[3]{b}}{4} = \frac{4b\sqrt[3]{b} - b\sqrt[3]{b}}{4} = \frac{3b\sqrt[3]{b}}{4} \iff 24 = 3b\sqrt[3]{b} \iff \frac{24}{3} = 8 = b\sqrt[3]{b} = \sqrt[3]{b^4} \iff b = \sqrt[4]{8^3}$$

$$b = \sqrt[4]{2^9} = 2^2 \sqrt[4]{2} = 4\sqrt[4]{2}$$
 y el area $A = 12$ u 2 y por tanto $A_1 = A_2 = \frac{A}{2} = 6u^2$

19 Dibuja la región definida por las inecuaciones $x + y \ge 0$, $y \le x/2$ y $x \le 4$, y calcula su área.



El área es la de la región comprendida entre el punto de corte de las dos rectas (0,0) y la abscisa x = 4, o sea la integral definida :

Área =
$$\left| \int_0^4 \left(\frac{x}{2} - (-x) \right) dx \right| = \left| \int_0^4 \left(\frac{3x}{2} \right) dx \right| = \left| \frac{3x^2}{4} \right|_0^4 = 12u^2$$

Geométricamente es la suma del área del triángulo de base 6 (2 el que está por encima del eje de abscisas + 4 del que está por debajo) y altura $4 = (6 \cdot 4) / 2 = 12 u^2$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Diamond \Diamond \Diamond \Diamond$$

20 Sea $f(x) = ax^2 + bx + c$. Determina los coeficientes a, b y c para que se cumpla:

$$\int_0^2 f(x)dx = 2y \ f(0) = 0 \ y \ f(1) = 4.$$

---00000---

La función tiene tres parámetros a hallar luego necesitamos tres ecuaciones :

①
$$\int_0^2 (ax^2 + bx + c) dx = 2 \iff \frac{ax^3}{3} + \frac{bx^2}{2} + cx \Big]_0^2 = 2 \iff \frac{8}{3}a + 2b + 2c = 2$$

②
$$f(0) = 0 \Leftrightarrow c = 0$$
.

$$3 f(1) = 4 \Leftrightarrow a + b + c = 4$$

El sistema a resolver es:

$$\begin{cases} 4a + 3b + 3c = 3 \\ c = 0 \\ a + b + c = 4 \end{cases} \iff \begin{cases} c = 0 \\ 4a + 3b = 3 \\ a + b = 4 \end{cases} \Rightarrow \begin{cases} c = 0 \\ 4a + 3b = 3 \\ b = 13 \end{cases} \Rightarrow \begin{cases} c = 0 \\ a = \frac{3-39}{4} = -9 \\ b = 13 \end{cases}$$

$\Diamond \Diamond \Diamond \Diamond \Box \Box \odot \Box \Box \Diamond \Diamond \Diamond \Diamond$

20 Halla el área de la región plana limitada por las parábolas $y = x^2$ e y = 2 x^2 entre las abscisas 0 y \mathbf{k} , para cualquier $\mathbf{k} > 0$. ¿Cuánto ha de valer k para que dicha área sea de 72 u^2 ?

---00000---

Como el área comprendida entre dos funciones f(x), g(x) y las abscisas x = a y x = b es :

Área =
$$\left| \int_{a}^{b} (f(x) - g(x)) dx \right|$$

en nuestro caso será:

Área =
$$\left| \int_0^k (2x^2 - x^2) dx \right| = \left| \int_0^k x^2 dx \right| = \left| \frac{x^3}{3} \right|_0^k = \frac{k^3}{3} u^2 y k > 0$$

Para que el área sea 72 u²:

22 Los datos de la tabla siguiente se han obtenido

de forma experimental:

X	0	0'25	0'5	0'75	1
y	1'05	1'27	1'62	2'14	2'73

Aplica un método de integración numérica para calcular aproximadamente el área comprendida entre la gráfica de la función y = f(x) que pasa por los valores dados por la tabla, el eje de abscisas y las rectas x = 0 y x = 1.

---00000---

Un método numérico es el de los trapecios que calcula el área mediante :

$$\int_{a}^{b} f(x) dx \approx h(\frac{y_0}{2} + y_1 + ... + y_{n-1} + \frac{y_n}{2})$$

en donde:

- \odot h = amplitud de cada subintervalo = x_2 x_1 = 0'25 en nuestro caso
- n = número de subintervalos = 4, pues hay 5 abscisas.
- y_n = las ordenadas correspondientes, en la tabla .

23 Aplica el método de los trapecios para calcular aproximadamente el área comprendida entre el eje de abscisas, las rectas x = 1 y x = 2, y la gráfica de la función y = f(x), a la que pertenecen los puntos de la tabla siguiente:

X	1	1'2	1'4	1'6	1'8	2
y	4	3'89	3'58	3'14	2'59	2

---00000---

Ahora
$$h = 1'2 - 1 = 0'2$$
, $n = 6 - 1 = 5$, $a = 1$ y $b = 2$, luego:

Área =
$$\left| \int_{1}^{2} f(x) dx \right| \approx 0' 2(\frac{4}{2} + 3'89 + 3'58 + 3'14 + 2'59 + \frac{2}{2}) = 3'24u^2$$

24 Utiliza el método de Simpson, descomponiendo el intervalo de integración en cuatro partes, para calcular la integral:

$$\int_{4}^{8} \sqrt{x+2} \, dx$$

---00000---

① Como se nos dice que dividamos el intervalo en cuatro partes, cada subintervalo tendrá una amplitud :

$$h = \frac{\text{Amplitud total}}{n^0 \text{de partes}} = \frac{b-a}{4} = \frac{8-4}{4} = 1 \text{ y las abscisas son } x_0 = a = 4, x_1 = 5, x_2 = 6, x_3 = 7, x_4 = b = 8$$

2 Ordenadas:

$$f(x_0) = f(4) = \sqrt{6}$$
, $f(x_1) = \sqrt{7}$, $f(x_2) = \sqrt{8}$, $f(x_3) = 3$, $f(x_4) = \sqrt{10}$

③ Extremos, sumas pares e impares.

$$E = f(x_0) + f(x_4) = \sqrt{6} + \sqrt{10}$$
, $P = f(x_2) = 2\sqrt{2}$, $I = f(x_1) + f(x_3) = \sqrt{7} + 3$

Fórmula de Simpson.

$$\int_{4}^{8} \sqrt{x+2} \, dx \approx \frac{h}{3} (E+2P+4I) = \frac{1}{3} (\sqrt{6} + \sqrt{10} + 4\sqrt{2} + 4\sqrt{7} + 12) = 11'2839$$

26 El número de personas fallecidas a partir del año 1970 en accidentes de tráfico en un país ha seguido la siguiente evolución:

$$M(t) = 1 329 e^{0.07 t}$$

donde t es el tiempo en años transcurrido desde 1970. Calcula, aproximadamente, aplicando la integra definida:

- **a)** ¿Cuántas personas murieron entre 1975 y 1980 en accidentes de tráfico en dicho país ?
 - b) ¿Cuántas fallecieron entre 1970 y 1990?

---00000---

a) Si consideramos el año cero el 1970, los años comprendidos entre 1975 y 1980 corresponden al intervalo [5, 10], luego el número de fallecidos será:

$$\int_{5}^{10} M(t) dt = \int_{5}^{10} 1329 e^{0'07t} dt = 1329 \frac{e^{0'07t}}{0'07} \bigg]_{5}^{10} = \frac{1329}{0'07} (e^{0'7} - e^{0'35}) = 11290'5 \approx 11291$$

b) Ahora es la integral en el intervalo [0, 20]:

$$\int_0^{20} M(t) dt = \int_0^{20} 1329 e^{0'07t} dt = 1329 \frac{e^{0'07t}}{0'07} \Big]_0^{20} = \frac{1329}{0'07} (e^{1'4} - e^0) = 58005$$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \Diamond \Box \Diamond \Diamond \Diamond \Diamond$$

- **26** La evolución de la población de un país, en millones de habitantes, entre los años 1990 y 1999 viene dada por la siguiente expresión: $p(t) = 38 e^{-0.02 t}$ donde t es el tiempo en años transcurrido desde 1990.
 - a) Halla una primitiva P de la función p.
 - b) ¿La población en dicho período ha aumentado o ha disminuido?
 - c) Calcula la población media del país en el período considerado.

---00000---

a)
$$P(t) = \int p(t)dt = \int 38e^{-0'02t}dt = -\frac{38}{0'02}e^{-0'02t} + C = -1900e^{-0'02t} + C$$

b) Es la integral definida en el intervalo [0, 9]:

$$\int_0^9 38 e^{-0'02t} dt = -1900 e^{-0'02t} \Big]_0^9 = -1900 (e^{-0'18} - e^0) = -1900 (0'8352 - 1) \approx 313 > 0$$

Como es positiva, ha aumentado.

c) Es el incremento de la función en ese tiempo:

$$\frac{\Delta P}{\Delta t} = \frac{313}{9} = 34^{7}$$

27 La facturación de una empresa tuvo en el último año un crecimiento continuo del 1 %. Sabiendo que a comienzos de año la facturación alcanzó la cifra de 1000 millones de euros, ¿ a cuánto ascendía a finales de año ?

---00000---

Representamos por f(t) la función que nos da la facturación en cada instante, su crecimiento será la primera derivada f'(t) luego :

$$f'(t) = 0'01f(t)$$
 {ya que crece un 1 %} $\Rightarrow \frac{f'(t)}{f(t)} = 0'01 \Rightarrow \int \frac{f'(t)}{f(t)} dt = \int 0'01 dt$ es decir:

$$ln f(t) + C_1 = 0'01t + C_2 \Leftrightarrow ln f(t) = 0'01t + C \{ C = C_2 - C_1 \}$$

para hallar la constante C sabemos que para t = 0 f(0) = 1000 millones :

$$ln\,f(0)=0'01\cdot 0\,+\,C \\ \Leftrightarrow ln\,1000=C \\ \Rightarrow ln\,f(t)=0'01t\,+\,ln\,1000 \\ \Leftrightarrow ln\,\frac{f(t)}{1000}=0'01t \\ \Leftrightarrow ln\,f(t)=0'01t\,+\,ln\,1000 \\ \Leftrightarrow ln\,f(t)=0'01t\,+\,ln\,$$

$$\frac{f(t)}{1000} = e^{0'01t} \iff f(t) = 1000e^{0'01t} \text{ (millones)} \Rightarrow f(12) = 1000e^{0'01\cdot12} = 1127'49 \text{ MM}.$$

$$\Diamond \Diamond \Diamond \Diamond \Box \Box \odot \Box \Diamond \Diamond \Diamond \Diamond$$

28 El porcentaje de parados de un país disminuyó en el último año a un ritmo dado por la función :

$$p(t) = 0.6 e^{0.12 t} + 7$$

donde $0 < t \le 12$ es el tiempo en meses.

Sabiendo que a principios de año se registraron 1 750000 parados, calcula:

- a) ¿ Cuántos parados había en el mes de abril ?
- b) ¿Cuántos en el mes de septiembre?

---00000---

a) Los parados en el mes de abril serán los iniciales (P_0 = 1 750 000) menos el descenso hasta abril (A) que hallamos a través la integral definida en el intervalo [0, 4], pues abril es el cuarto mes :

$$\int_{0}^{4} (0'6e^{0'12t} + 7)dt = \frac{0'6}{0'12}e^{0'12t} + 7t\Big]_{0}^{4} = (5e^{0'48} + 28) - (5e^{0}) = 31'0804\%$$

El descenso es A = 1 750 000·0'310804 = 543 906'5102 \approx 543 907 parados.

Parados en Abril = P_0 - A = 1 750 000 - 543 907 = 1 206 093 parados

b) hallamos el porcentaje de descenso hasta septiembre :

$$\int_0^9 (0'6e^{0'12t} + 7)dt = \left[\frac{0'6}{0'12}e^{0'12t} + 7t \right]_0^9 = \left(5e^{1'08} + 63 \right) - \left(5e^0 \right) = 72'72339\%$$

El descenso es S = 1 750 000·0'7272339 = 1 272 659'461 \approx 1 272 660 parados.

Parados en Septiembre = P_0 - S = 1750000 - 1272660 = 477340 parados